

SELECTED OPPORTUNITIES IN BIOMATERIAL

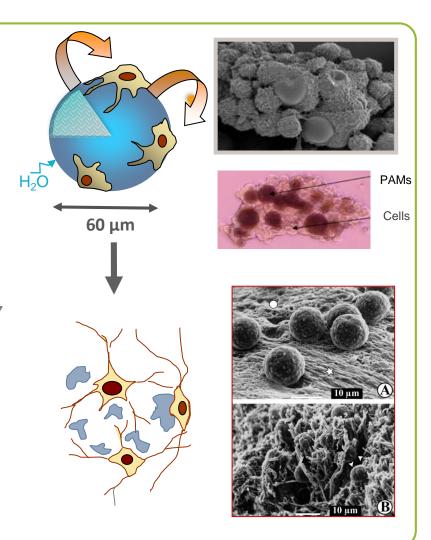
Pharmacologically Active Microcarriers for efficient integration of transplanted cells in the host tissue (BIO11360, GBM01306, GBM06412)

PHARMACOLOGICALLY ACTIVE MICROCARRIERS FOR EFFICIENT INTEGRATION OF TRANSPLANTED CELLS IN THE HOST TISSUE (BIO11360, GBM01306, GBM06412)

Product factsheet POC in vivo

- Technology:
 - Pharmacologically Active Microcarriers (PAMs) for efficient integration of transplanted cells in the host tissue
- Application:
 - Cell therapy
- POC & main Publications:
 - Technology:
 - Tatard et al., Biomaterials 2005
 - Giteau et al., European Journal of Pharmaceutics and Biopharmaceutics 2008
 - Tran et al., Eur J Pharm Sci 2012
 - Cartilage repair:
 - Bouffi et al., Biomaterials 2010
 - Morille et al., Journal of Controlled Release 2013
 - Parkinson disease:
 - Tatard et al., Cell Transplantation 2004;
 - Tatard. et al., Biomaterials 2007;
 - Tatard. et al., Bone 2007;
 - Delcroix et al., Biomaterials 2011;
 - Daviaud et al., Stem Cells TM 2015
 - Ischaemic stroke:
 - Garbayo et al., J. Neurochem 2011;
 - Quittet et al., Acta Biomateralia 2015
 - Regeneration of post-ischemic tissues:
 - Musilli et al., European Journal of Pharmaceutics and Biopharmaceutics 2012
 - Penna et al., J. Cell. Mol. Med. 2013
- Patents:
 - PCT/ WO 03/092657 A1
 - PCT/EP2008/063147
 - PCT/EP2013/056813

PHARMACOLOGICALLY ACTIVE MICROCARRIERS FOR EFFICIENT INTEGRATION OF TRANSPLANTED CELLS IN THE HOST TISSUE (BIO11360, GBM01306, GBM06412)

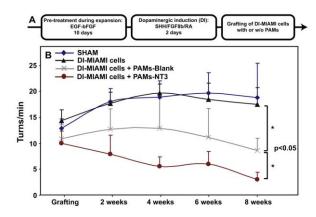

Patented Technology

Pharmacologically Active Microcarriers (PAMs)

- Biocompatible and biodegradable microparticles
- Coated with cell adhesion molecules
- Conveying cells on their surface
- Presenting a controlled delivery of growth factor
- Survival/differentiation of transplanted cells
- Modulation of the microenvironment
- Integration of transplanted cells in the host tissue

Publications:

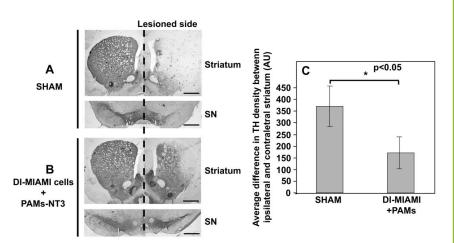
Tatard V.M. et al., Biomaterials 2005 26(17) 3727-37



Pharmacologically Active Microcarriers for efficient integration of transplanted cells in the host tissue (BIO11360, GBM01306, GBM06412)

Proof of concept

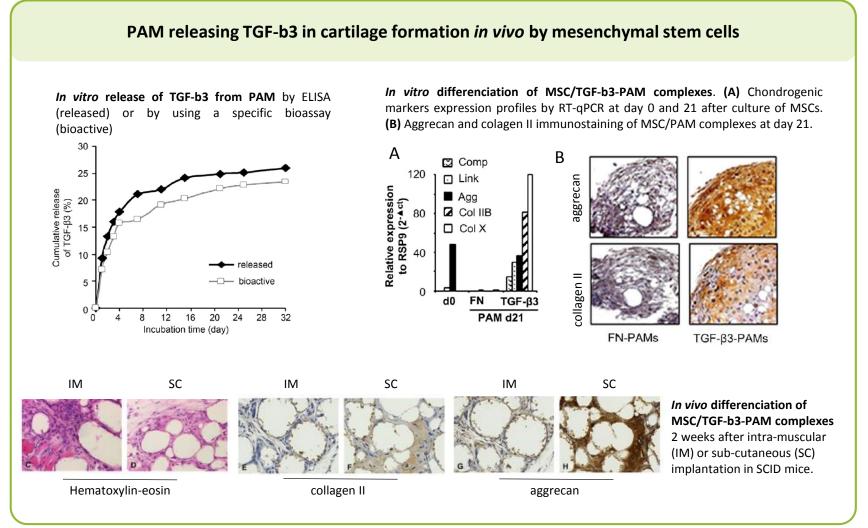
The therapeutic potential of human multipotent mesenchymal stromal cells combined with PAM transplanted in hemi-parkinsonian rats

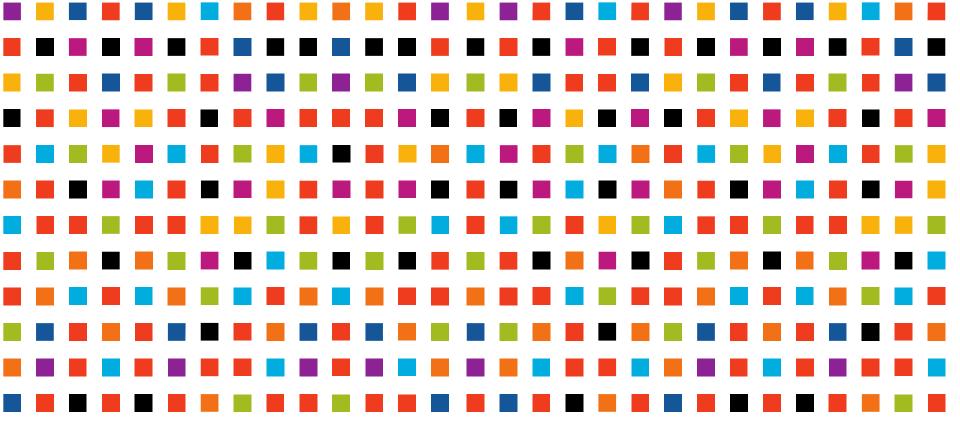

- hemi-parkinsonian Model
 - PAMs were coated with laminin and designed to release neurotrophin 3 (NT3)
 - Grafting of Marrow-Isolated Adult Multilineage Inducible Cells (MIAMI cells) on PAM-NT3
 - MIAMI cells: Homogeneous sub population of human Mesenchymal Stem Cells
 - Stimulate the neuronal-like differentiation of MIAMI cells and promote neuronal survival
 - Transplantation in hemi-parkinsonian rats (partially dopaminergic-deafferented striatum)

Functional recovery during amphetamine-induced rotational behavior.

Before transplantation, cells were pre-treated with EGF-bFGF and further induced toward a dopaminergic phenotype (DI-MIAMI cells) prior to their attachment to PAM biomimetic surface.

Rats transplanted with DI-MIAMI cells adhering to PAMs-NT3 resulted in a constant, and statistically significant, decrease of their rotational behavior until the end of the experiment.




Neuroprotection/reparation of nigrostriatal pathway induced by PAMs/DI-MIAMI cell complexes

Eight weeks after transplantation, Tyrosine Hydroxylase-positive fibres were observed in the striatum and the substantia nigra (SN).

PHARMACOLOGICALLY ACTIVE MICROCARRIERS FOR EFFICIENT INTEGRATION OF TRANSPLANTED CELLS IN THE HOST TISSUE (BIO11360, GBM01306, GBM06412)

Proof of concept

ALEXANDRE.FLORIMOND@INSERM-TRANSFERT.FR

