

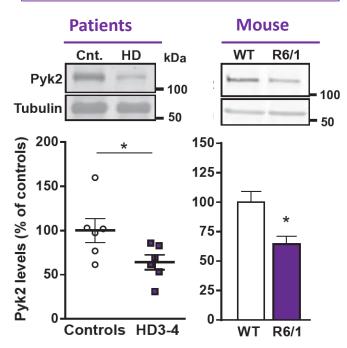
SELECTED OPPORTUNITIES IN NEUROSCIENCES

Pyk2-based gene therapy attenuates cognitive deficits associated to Huntington's disease (HD) (BIO17059)

Pyk2-based gene therapy attenuates cognitive deficits associated to Huntington's disease (HD) (BIO17059)

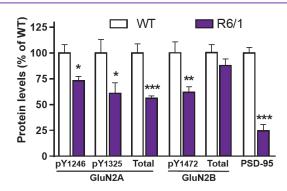
Product factsheet stage

- Product: Adeno associated virus expressing Pyk2
- Mechanism:
 - Pyk2 is a non-receptor calcium-dependent tyrosine kinase highly expressed in the hippocampus
 - PTK2B, the gene encoding Pyk2, is a susceptibility locus for Alzheimer's disease
 - Pyk2 knockout impairs hippocampal-dependent memory and LTP in mouse
 - NMDA receptors and PSD-95 are altered in Pyk2 mutant mice
 - Spines are altered in the hippocampus of Pyk2 mutant mice
 - Pyk2 deficit alters NMDA-induced PSD-95 recruitment in spines
- ▶ Phase of development: in vivo PoC
 - Pyk2 expression and synaptic markers are altered in Huntington's disease (HD)
 - Restoring Pyk2 expression through hippocampal AAV injection rescues the hippocampal phenotype of HD mice
- Potential applications: Huntington's disease (PoC)
- Patent: EP17305340 / Priority date 24 March 2017
- ▶ **Ref:** « Pyk2 modulates hippocampal excitatory synapses and mediates Huntington's disease (HD) cognitive deficits » Nature Comm, May 2017

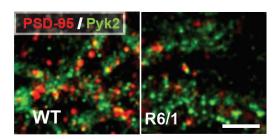


Pyk2-based gene therapy attenuates cognitive deficits associated to Huntington's disease (HD) (BIO17059)

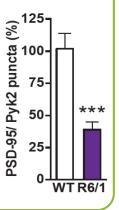
Proof of Concept


Hippocampal alterations of Pyk2 and synaptic markers in Huntington's disease

Pyk2 expression is altered in HD

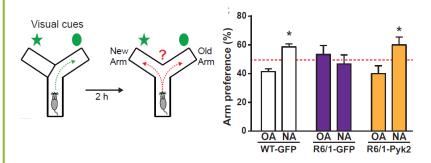


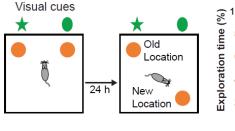
Hippocampal porst-mortem samples from human patients and control and from WT and R6/1 transgenic mice were analyzed by immunoblotting and quantified . Tubulin was used as a loading control.

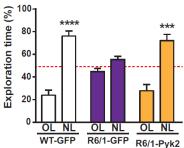

Synaptic markers are altered in HD

Immunoblotting for phosphorylated and total GluN2A and GluN2B, and PSD-95 in hippocampus of WT and R6/1 mice.

Confocal images of the of CA1 hippocampal sections from WT and R6/1 mice immunolabeled for PSD95 (red) and Pyk2

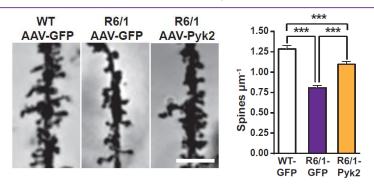


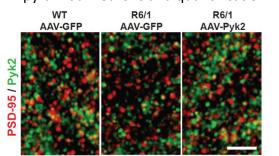

Pyk2-based gene therapy attenuates cognitive deficits associated to Huntington's disease (HD) (BIO17059)

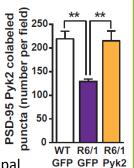

Proof of Concept

Pyk2 protein levels restoration in the hippocampus rescues R6/1 mouse cognitive phenotype

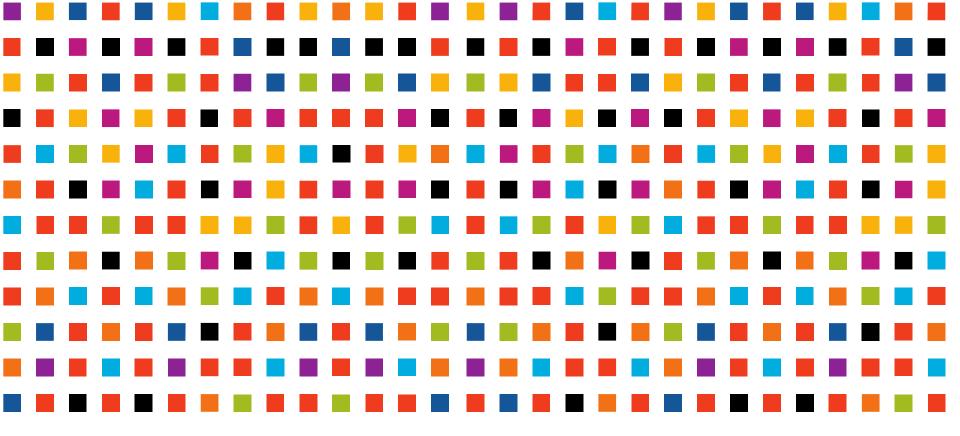
Pyk2 expression recovery improves hippocampal phenotype of R6/1 mice






Y-maze and novel object location tests were used to assess cognitive performances of HD mice.

Pyk2 expression recovery improves synaptic abnormalities in R6/1 mice



Golgi-Cox staining of hippocampal dendrites from CA1 pyramidal neurons and quantification.

Confocal images of the of CA1 hippocampal sections from WT and R6/1 mice immunolabeled for PSD95 (red) and Pyk2

ANNE.COCHI@INSERM-TRANSFERT.FR

