Modulator of WIP1 levels to treat Wolfram syndrome (BIO15148)
Product factsheet

- **Product**: WIP1 gene therapy / inhibitor of WIP1 degradation

- **Potential applications**: Wolfram syndrome (WS) is an autosomal recessive neurodegenerative disorder characterized by diabetes insipidus/mellitus, optic atrophy and deafness.

- Loss of function of WFS1 is responsible for WS

- Gene therapy aiming at WFS1 normal expression is impossible due to the size of the WFS1 gene

- **Mechanism**: unexpected key role of WFS1 and WIP1 in ER-mitochondria crosstalk which reconciles the ER expression of WFS1 with the mitochondrial phenotype
 - WFS1 forms a complex with WIP1 (official name undisclosed), to promote ER-mitochondrial Ca2+ transfer in response to stimuli that generate inositol-1,4,5-triphosphate.
 - WFS1 associates with WIP1 to prevent its degradation by the proteasome.
 - WIP1 regulates VDAC expression and mitochondrial respiratory chain.

- **Phase of development**: POC in vitro and in vivo
 - WS patients fibroblasts show diminution of WIP1 protein expression
 - WS patients fibroblasts treatment with proteasome restores levels of WIP1 to a level comparable to normal patients
 - Expression of WIP1 in WS patients fibroblasts can overcome WFS1 deficiency and restore mitochondrial respiration

- **Patents**: PCT/EP2017/056940, TARGETING THE NEURONAL CALCIUM SENSOR 1 FOR TREATING WOLFRAM SYNDROME

November 2017
MODULATOR OF WIP1 LEVELS TO TREAT WOLFRAM SYNDROME (BIO15148)

Proof of concept

Restoration of WIP1 expression in cells of WS patients can overcome WFS1 deficiency and mitochondrial respiratory defects.
anne.cochi@inserm-transfert.fr

Business development manager